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motion of a solid, fixed at the centre of mass and having a spherical 

central ellipsoid of inertia in a central Newtonian field of force is 

investigated. Uniform bodies of the simplest geometrical shapes (a cube, 

cone and cylinder) are considered. In view of the difference in the 

symmetries of these bodies the nature of their motions will be different. 

The equations of motion of a cone and a cylinder are integrated in terms 

of ultra-elliptic and hyperelliptic functions respectively. Sets of 

positions of equilibrium, permanent rotations, and regular precessions 

are indicated, and their branching and stability are investigated. Unlike 

the case when only second-order moments of inertia are taken into account, 

two features are determined here: 1) tow families of inclined positions 

with respect to equilibrium exist, and 2) for a body in the form of a 

cone the direct position of relative equilibrium is unstable if the vertex 

of the cone is situated between an attracting centre and a fixed point, 

and is stable otherwise, which has no analogue for permanent rotations of 

a body with a triaxial central ellipsoid of inertia. 

1. suppose Oh5 is a fixed system of coordinates with origin at the centre of mass of 

a body at a distance R from an attracting centre and an axis 6 directed along a rising local 

vertical, and 0x1x2x, is a. system of coordinates rigidly coupled to the body. The mutual 

orientation of the E, 9, 5 and Xl, X2, X3 axes is specified by a matrix of direction cosines. 

We will denote the unit vectors of the E,q, 5 axes by cz.fi,y, and their projections on to 

the X1, X2. XS axes by CC~, pi, vi (i = 1,2,3) 
The coordinates X1,X2.X3 of a point of the body will be written in dimensionless form 

by relating them to a characteristic linear dimension a of the body (a is the side of the 

cube or the radius of the base for a cone and a cylinder). 
The force function U of the forces of Newtonian traction has the form (~1 is the 

gravitational constant and p is the density of the body) 

A = R [$ (5% + q2) + (1 + &~)‘l”t = R [I + 2e (%YI + 
x2y2 + x,y,) + E2 (xl2 + xa2 -I- “s~)]“~ (E = a/R < I) 

f (E) = 11 -t 285 + ea (ES + $ -t 5”)W 

It can be seen that U is independent ofaiand pi, and hence equilibrium is preserved as 

the body rotates about the 5 axis. 
We will calculate CJ up to fourth-order terms in E using the expansion 

*Prikl.Elatem.Mekhan.,51,2,268-274,198? 
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f (E) = 1 + &f' + $ f” + f f" + -p” + . . . 
f’ = 5, f” = 3c2 - ra, fm = -l555 + 9cr2 

f”” = 105c4 - 90<*r2 + 9r4, r2 = E” + qz + 5% 

2. The corresponding expression for the principal term U of the force function (1.1) 

for a cube, assuming that the coordinate planes of the system of coordinates or14r, are 

parallel to the edges ofthecube, has the form (m is the mass of the body) 

U = x-{yr2y22 + (y12 + y?') [I - (yr2 + -J~~)I}, x = 7pmeV96R 

The equationsofequilibrium of the cube 

-g = - 2% (2Q + ll’lYr2 - Vl) = 0, -g == - 2x (2$ + y&z - VP) = 0 

have the following three groups of solutions: 

4 h2f 1, b) y1 = 0, yzz = ya2 = V2, c) y12 = 
y*2 = y: = v3 (123) 

The family of solutions a) contains six positions of equilibrium in which the 5 axis 

passes through the centre of the face; family b) contains twelve equilibria in which the 5 

axis passes through the middle of an edge; family c) contains eight equilibira in which the 

5 axis passes through the vertex of the cube. 

By calculating the second variation 6'u of the function U, it can be shown that the 

family of equilibria c) is stable, while a) and b) are unstable, and the degree of instability 

is equal to 1 and 2 respectively for these. 

3. To obtain the force function of a cone and a cylinder we will direct the XQ axis 

along the axis of symmetry of these bodies. The height of the cone and the cylinder,determined 

from the condition for the second-order moments of intertia to be equal, is 2a and 1/3a 

respectively. 

For a cone and a cylinder the principal terms in the expansion of the force function 

have the following form respectively: 

u1 = k, (3-5y,2) y3 (k. = pmEa/(16R)) (3.1) 

U, = v. (6-7 yzs) ysa (v. = 11 pme”l(l28R)) (3.2) 

It is obvious that the positions of equilibrium of the cone and the cylinder are in- 

dependent of the angles of rotation of the bodies about the 5 and x3 axes. 

The equations of equilibrium of the cone and the cylinder can be written in the form 

dU,ldtl = 3k, (5 cosa 6 - 1) sin 8 = 0 (3.3) 

dU,ld6 = 2~~ (7 ~09 e - 3) sin 28 = 0 (ys = cos e) (3.4) 

and have the following solutions: 

a)COSe = -1, @)COSe = 1/1/s, C)COSe= 11/s,d)COS8 = 1 

a) cos e = --I’, b) COS 8 = -I/m, C) COS 8 = 0, 

a) cos e = 1/377, e) cos e = 1 

(3.5) 

(3.6) 

The problem of the stability of the equilibria (3.5) and (3.6) can be solved by in- 

vestigating the sign of the second derivative with respect tour and U,. It can be shown that 
the equilibria of the cone a) and b) are stable, while the equilibria c) and d) are unstable, 
the equilibria of the cylinder b) and d) are stable, while the equilibria a),~) and e) are 
unstable. 

4. We will investigate the permanent rotations and regular precessions of the cone and 

the cylinder in Euler variables. 

For both cases the kinetic energy 

T = I/% _4 I 8’* + q-2 + ‘p-2 + 2m*+ ~08 e) (4.1) 

and the force functions (3.1) and (3.2) are independent of 'p and $. Consequently, the equations 
of motion have the following cyclic integrals 

o3 = up* + +* c0s 8 = C,, m6 = up* cos e + 9. = c2 (4.2) 

where o3 and OK are the projections of the instantaneous angular velocity 61 of the r,and 5 
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axes. The equation for 0 reduces to the following form: for a cone 

8" + cp'$'sin R = k sin 8 (5 cos2 0 - 1) (ii = 3&/A) 

and for a cylinder 

(4.::) 

8" i- cp'*' sin B = Y sin e CDS 8 (7 1309 8 - 3) (x> = ho/A) ,(4.4) 

Eqs. (4.2), (4.31, and (4.2), (4.4) are integrable. Their general solutioncanbeobtained 
by inversion of the ultraelliptic and hyperelliptic integrals respectively 

Eqs.(4.2), (4.3) and (4.2), (4.4) have a family of partial solutions which 

the table (h = l/fs for a cone and h = ]J%?' for a cylinder), and determine 
rotations of the cone and the cylinder. 

are shown in 

the permanent 

Table 1 

with 

1 Notes I( rvp 1 

For solutions 50-B” the axis of the cone is inclined to the 5 axis and the cone rotates 
constant angular velocity $' = c2 around the 5 axis, or rp* r= c1 around the x3 axis. 
In addition to these solutions, Eq.(4.2) and (4.3) also have a family of solutions of 

the form 'p' = 'po', Q' = 1po', 8' = 0, B = 0,, which exist when the conditions -k x< tp,‘$~,*<kk 

are satisfied. Regular precessions of the cone correspond to these solutions. If CPE" -= 0 
or Q' = 0, the regular precessions of the cone become permanent rotations. If instead of 

'FO'? 90' we take c1 and c2 as the parameters, we will have the following equations fox determin- 
ing 8,: 

(~1 - czfJ)(cz - c&) + k (1 - @*)(l - 5s”) = 0, b = cos 6 (4.5) 

1t is obvious that for any cr and cz(cl# f czfr Eq. (4.5) has at least one real root 
8 = 0, (0< 4 <a). since the function on the left-hand side of (4.5) changes sign in the 
interval [A, il. 

Consider the case of a cylinder. For solutions Y.O and 2O the axis of symmetry of the 
cylinder s,is perpendicular to the 6 axis, and the cylinder in this case rotates with an 
arbitrary angular velocity qO' around the { axis, or 'po' around the x,axis. In cases 5o-8O 
the axis of the cylinder is inclined to the 5 axis and the cylinder rotates with arbitrary 
angular velocity 1po' around the 5 axis, or 'po' around the ~3 axis. 

In addition to these solutions, Eqs.(4.2) and (4.4) also have a family of solutions of 
the form cp' = 'pa', Q* =qO*, 6' = 0, Cl = 6, describing regular precessions of the cylinder. The 
values &, are found from the equation 

(c, - c%B)(Cz-clB) + Yfi (1 - @2)(1 +-pyy3 - 782) = 0, B = cos 6 (4.6) 

Like (4.51, Eq.(4.6) for any c1 and c,(c,# fc,) has at least one real root 6 = 00 (0 < 

6, < x). 
If, instead of cr.and cg we take r&,' and q,,' as the parameters, we will obtain the following 

equation for 0,: 
7 cosse, - 3 cos e. - ‘PO’ qJ)‘/v = 0 (4.7) 

When the conditions 

I cpo’&,’ I < 2v/l/% - 1/v Q cos [arccos (797&,,' +-41vn)/61 <: 1/7/2, 1 = 0, 1, 2 

are satisfied, Eq.(4.7) has three different real roots; when Icp~'+#~'l==2vft/~ there are three 
_- 

real roots cos 0,~ = 2&f’/*, cos B,, = cw Be, = BP*, twoofwhich are identical; when I cpo*q%l* 1 > 2YlV 7 
and --1,<a++u-~1 there is one real root ces $ = a++ 6. 

Here CL* = (M rt N)'J*, M = ~p~‘1&~‘/(i4v), N = jfhf” - l/7/7 

5. The sets of permanent rotations and regular precessions ofthecone and the cylinder 
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can be represented geometrically in the space of the variables cl, c,,6 (ya) in the form of 
surfaces defined by Eqs.(4.5) and (4.6). To analyse these surfaces we will write Eqs.(4.5) 
and (4.6) in the form 

The sections of the surfaces (5.1) and (5.2) with the planes ya = yao represent hyperbola, 
the principal axes of which are the coordinate axes m and n, if yso does not reduce the right- 
hand sides of Eqs.(5.1) and (5.2) to zero; otherwise, we will have a pair of intersecting 
straight lines (I- y~o) m = rfr: (1 -by 30 n in the section.The pointsofthe hyperbolas correspond ) 
to regular precessions, while the points of the straight lines correspond to permanent 
rotations. 

In Figs.l-4 we show sections of the surfaces (5.1) by the planes It =@ (Fig.l), m=O 

(Fig.21, n=fElm Fig.3), II = f S,m (Fig.4), (8, = &I-~= (fl- i)(Jf% $ I)-“). In all the 

figures the points on the ys axis for which yr = A 1, A- l/fi correspond to positions of 
equilibrium of the cone. Its permanent rotations correspond to the straight lines Y3 = 1 

(Fig.11, ys = --1 Wig.;), ya =L I,jfS (Fig.3), and y3 = -*!Js (Fig.4). 
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In Figs.5-9 we show sections of the surface (5.2) by the planes n =o (Fig,5), m =O 
(Fig.61, n = fm (Fig.7), 

1/$(67+ 1/z&-r): 

n = f6,m (Fig.81, and n = &Qn. (Fig.91 (6, =6,-l = (VT- 

In all Figs.59 points on the ys axis for which ya = O,k i,& y’m correspond to 
positions of equilibrium of the cylinders. The straight lines ya = 1 (Fig.51, ys= -1 

N.g.G), ys =0 (Fig.7), ys =+= .r/3/7 (Fig.8), and ya = -d3/1 (Fig.9) correspond to its 
permanent rotations. 

The remaining branches in Figs.l-9 correspond to regular precessions of the cone and 
the cylinder. 

We will investigate the stability of the permanent rotations and regular precessions of 
the cone and the cylinder. Let us consider Fig.1 to be specific. In it the points (ya= 1, 

n =O) and (ys =-i/T/g, TZZ = 0). as was shown in sect.3, correspond to unstable positions of 



212 

equilibrium of the cone, while the points (ys = 1/Jfg, m = 0) and (y'~ = -1, m = 0) correspond 
to stable equilibria. On the basis of the theory of bifurcations we conclude that the branches 
shown in Fig.1 by the plus and minus signs correspond to stable and unstable permanent 
rotations and regular precessions of the cone. A change in stability occurs at the points 
of bifurcation. 

Fig.5 

Fig.7 

Fig.6 

Fig.8 

Similar conclusions can be reached regarding the stability of the permanent rotations 
and regular precessions for other possible cases. The results of the analysis of 

stability and instability are shown in Figs.l-9. 

the 

-1 

Fig.9 

Note that the permanent rotations of the cone and the cylinder corresponding 
equilibrium orientations are also unstable for a fairly low angular velocity, and 
fairly high angular velocity. 
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